Abstract

IntroductionAltered levels of mitochondrial DNA copy number (mtDNA-CN) have been proposed as a proxy for mitochondrial dysfunction. Following reports of mtDNA depletion in the blood and substantia nigra of Parkinson's disease (PD) cases, mtDNA-CN was also suggested as a possible biomarker for PD. Therefore, this study aimed to investigate whether blood mtDNA-CN levels of African ancestry PD cases would be altered compared to controls, as previously reported in individuals of Asian and European ancestry. MethodsDroplet digital polymerase chain reaction (ddPCR) was performed to quantify blood-derived mtDNA-CN levels as a ratio of a mitochondrial gene (MT-TL1) to a nuclear gene (B2M) in 72 PD cases and 79 controls of African ancestry (i.e. individuals with African mtDNA haplogroups) from South Africa. mtDNA-CN per cell was calculated by the formula 2 × MT-TL1/B2M. ResultsAccepting study limitations, we report significantly higher mtDNA-CN in whole blood of our PD cases compared to controls (median difference = 81 copies/cell), independent of age (95% CI [64, 98]; P < 0.001]). These findings contradict previous reports of mtDNA depletion in PD cases. ConclusionsWe caution that the observed differences in mtDNA-CN between the present and past studies may be a result of unaccounted-for factors and variability in study designs. Consequently, larger well-designed investigations may help determine whether mtDNA-CN is consistently altered in the blood of PD cases across different ancestries and whether it can serve as a viable biomarker for PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call