Abstract

ObjectivesAdults born prematurely have an increased risk of early heart failure. The impact of prematurity on left and right ventricular function has been well documented, but little is known about the impact on the systemic vasculature. The goals of this study were to measure aortic stiffness and the blood pressure response to physiological stressors; in particular, normoxic and hypoxic exercise.MethodsPreterm participants (n = 10) were recruited from the Newborn Lung Project Cohort and matched with term‐born, age‐matched subjects (n = 12). Aortic pulse wave velocity was derived from the brachial arterial waveform and the heart rate and blood pressure responses to incremental exercise in normoxia (21% O2) or hypoxia (12% O2) were evaluated.ResultsAortic pulse wave velocity was higher in the preterm groups. Additionally, heart rate, systolic blood pressure, and pulse pressure were higher throughout the normoxic exercise bout, consistent with higher conduit artery stiffness. Hypoxic exercise caused a decline in diastolic pressure in this group, but not in term‐born controls.ConclusionsIn this first report of the blood pressure response to exercise in adults born prematurely, we found exercise‐induced hypertension relative to a term‐born control group that is associated with increased large artery stiffness. These experiments performed in hypoxia reveal abnormalities in vascular function in adult survivors of prematurity that may further deteriorate as this population ages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.