Abstract
Rational design and synthesis of Fe-N-codoped carbon materials are promising for replacing commercial Pt/C for oxygen reduction reaction (ORR). Herein, we develop a simple two-step pyrolysis approach to synthesize highly active Fe-N-codoped graphene-like carbon sheets (FeNGC) with active Fe-N-based species for ORR. In this strategy, two-dimensional nitrogen-doped graphene-like carbon sheets (NGC) with a high N-doping level (8.1 at%) and abundant mesoporosity (3.8 nm) are firstly synthesized by co-pyrolysis of biomass carbon source and dicyandiamide, in which dicyandiamide simultaneously serves as a trifunctional role of in situ reaction template, nitrogen source and porogen. Secondly, FeNGCs are prepared by additional iron doping of NGC at high temperatures, in which sheet-like structure is in favor of increased accessibility of N-functional groups to more Fe atoms, thus giving rise to formation of high-density Fe-N-based active sites. The optimized catalyst synthesized at 950 °C (FeNGC-950) demonstrates significantly increased ORR activity with a dominant 4e− reduction process compared to pure NGC in alkaline and acidic solutions, which evidently shows the comparable activity to Pt/C due to the synergy of simultaneously optimized structures and multi-active sites. Moreover, FeNGC-950 has better long-term stability and methanol tolerance than Pt/C both in alkaline and acidic electrolytes. The present strategy paves a new venue to design and prepare various metal-doped carbon materials with great potentials in energy applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.