Abstract

When magnetic nanoparticles (MNPs) are single-domain and magnetically independent, their magnetic properties and the conditions to optimize their efficiency in magnetic hyperthermia applications are now well-understood. However, the influence of magnetic interactions on magnetic hyperthermia properties is still unclear. Here, we report hyperthermia and high-frequency hysteresis loop measurements on a model system consisting of MNPs with the same size but a varying anisotropy, which is an interesting way to tune the relative strength of magnetic interactions. A clear correlation between the MNP anisotropy and the squareness of their hysteresis loop in colloidal solution is observed : the larger the anisotropy, the smaller the squareness. Since low anisotropy MNPs display a squareness higher than the one of magnetically independent nanoparticles, magnetic interactions enhance their heating power in this case. Hysteresis loop calculations of independent and coupled MNPs are compared to experimental results. It is shown that the observed features are a natural consequence of the formation of chains and columns of MNPs during hyperthermia experiments: in these structures, when the MNP magnetocristalline anisotropy is small enough to be dominated by magnetic interactions, the hysteresis loop shape tends to be rectangular, which enhance their efficiency. On the contrary, when MNPs do not form chains and columns, magnetic interactions reduces the hysteresis loop squareness and the efficiency of MNPs compared to independent ones. The present work should improve the understanding and interpretation of magnetic hyperthermia experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call