Abstract
Piribedil, (1–2″-pyrimidyl)-4-piperonyl piperazine), an agent proposed for the treatment of Parkinson's disease, was found to increase acetylcholine levels in the rat striatum and diencephalon but not in the mesencephalon, cerebellum or hemispheres. The effect was most marked in the striatum (greater than 100%) and long-lasting (at least 8 hours after a single administration of 60 mg/kg i.p.). Striatal choline levels were also increased by piribedil but did not parallel at all times and doses the effect on acetylcholine. Furthermore, choline levels were increased in all brain regions except the hemispheres. Striatal choline acetyltransferase and acetylcholinesterase were not affected by in vitro or in vivo treatment with even high doses of piribedil. α-Methyl-p-tyrosine was ineffective in blocking piribedil while pimozide, a blocker of dopamine receptors, completely antagonized the action of piribedil on striatal acetylcholine. It is concluded that piribedil produced the increase in striatal acetylcholine by directly stimulating dopamine receptors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have