Abstract

Increasing the iron (Fe) and zinc (Zn) concentrations of staple foods, such as rice, could solve Fe and Zn deficiencies, which are two of the most serious nutritional problems affecting humans. Mugineic acid family phytosiderophores (MAs) play a very important role in the uptake of Fe from the soil and Fe transport within the plant in graminaceous plants. To explore the possibility of MAs increasing the Fe concentration in grains, we cultivated three transgenic rice lines possessing barley genome fragments containing genes for MAs synthesis (i.e., HvNAS1, HvNAS1, and HvNAAT-A and HvNAAT-B or IDS3) in a paddy field with Andosol soils. Polished rice seeds with IDS3 inserts had up to 1.40 and 1.35 times higher Fe and Zn concentrations, respectively, compared to non-transgenic rice seeds. Enhanced MAs production due to the introduced barley genes is suggested to be effective for increasing Fe and Zn concentrations in rice grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.