Abstract
The use of Fowler flaps and slotted slats in sweptwing aircraft is the standard solution to increase wing lift at take off and landing. In the literature this solution is known as a classical option of high-lift system of commercial subsonic aircraft. The results of numerical and experimental studies of some solutions intended to increase the efficiency of classical high-lift devices are presented. The concept of the trailing-edge devices called "the adaptive flap" is considered as a way to improve flap efficiency. The adaptive concept is characterized by the integration of spoiler downward deflection to the Fowler flap function. Integration of the spoiler with a movable flap provided an increase of lift in the linear region due to flaps deflected to a higher angle. The steeper upwash angle at a leading-edge device may be the reason of an early stall of the main wing. To protect the leading edge a slotted Kruger flap with streamline form has been used. Preliminary design of classical and improved high-lift systems included the determination of aerodynamic shapes and the optimized position for the high-lift devices. Aerodynamic analysis and design were carried out using 2D RANS Navier-Stokes method. A comparison of computed results has shown visible aerodynamic advantages of an improved high-lift system for maximum lift coefficient and refining the behavior of stall characteristics at high angles of attack. The results of wind tunnel tests of aircraft model with adaptive flap showed its effectiveness.
Highlights
The use of Fowler flaps and slotted slats in sweptwing aircraft is the standard solution to increase wing lift at take off and landing. In the literature this solution is known as a classical option of high-lift system of commercial subsonic aircraft
The results of numerical and experimental studies of some solutions intended to increase the efficiency of classical high-lift devices are presented
The adaptive concept is characterized by the integration of spoiler downward deflection to the Fowler flap function
Summary
Именуемая «Адаптивный закрылок», рассмотрена как способ улучшения аэродинамических характеристик самолета на режимах взлета и посадки. Исследования, проведенные за прошедшие три десятилетия в гражданской авиации [4,5,6], показали возможности улучшения АДХ крыла как за счет использования различных устройств управления кривизной в крейсерском полете, так и повышения несущих свойств на взлетно-посадочных режимах. Основное внимание в ближайшее время будет сосредоточено на расширении функциональности механизации задней кромки с целью применения ее не только на режимах взлета и посадки, но и для адаптации геометрии сечений крыла в крейсерском полете. Более конструктивным решением может стать комплексный подход к использованию закрылков как на взлетно-посадочных режимах полета, так и в условиях крейсерского полета для управления характеристиками крыла и распределением нагрузки по размаху за счет локального изменения кривизны. Результаты исследования некоторых вариантов механизации, которые актуальны и в настоящее время, приведены ниже
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.