Abstract
An investigation on some methods for the incorporation of phase change materials (PCMs) into concrete and their effect on its properties is presented. PCMs are characterized by high latent fusion heat, which can increase thermal mass of concrete and contribute to the bioclimatic design of buildings. Concrete compositions with different aggregates (limestone, lightweight or their combination), as well as with different PCMs (paraffinic and dodecyl alcohol) were prepared by different incorporation methods (impregnation to lightweight aggregates or immersion of concrete specimens). Properties of fresh and hardened concrete were studied, as well as hydration heat, thermal response and flammability. The results revealed that the selected PCMs do not significantly affect the properties of concrete. Regarding hydration heat, the presence of the PCM in concrete contributes to a decrease of the temperature peak during hydration which also occurs delayed. Thermal response measurements showed that concrete with purely pumice aggregates has a much better thermal behavior than the other two compositions, while the existence of PCM causes large or small increase of concretes heat capacity, in temperature near to each PCM’s melting point. Finally, appropriate application of PCMs is needed in order to moderate the reported effect on concrete’s fire resistance
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.