Abstract

Recent studies have shown that fossil generators equipped with post-combustion carbon capture (PCC) systems are needed to reduce the cost of deep decarbonization. Such generators need to be flexible and responsive to grid conditions, particularly in a high variable renewable energy (VRE) environment. In this work, we evaluate the net present value (NPV) of retrofitting an existing natural gas combined cycle (NGCC) unit with a flexible PCC system while incorporating market signals from a high VRE grid. We use our industrial partner’s NGCC configuration as representative of existing NGCC units and Svante’s rapid-temperature swing adsorption (TSA) for PCC. Because of its ability to rapidly startup/shutdown and ramp-up/ramp-down, the chosen capture technology is very attractive for load-following operations. For a given set of market signals, we formulate a two-stage stochastic multi-period optimization problem, under the price-taker assumption, to simultaneously optimize the design of the capture system and operation of the entire plant. Rigorous models for the NGCC unit, PCC system, and compression system are developed using commercial process simulators and validated with either plant or vendor data. For computational tractability, we develop surrogate/reduced-order models for use in the optimization problem. The surrogate model for the NGCC plant is constructed by linearizing the rigorous dynamic model at 75% load, while data-driven nonlinear surrogate models for the capture and compression systems are constructed using simulation data from the rigorous models. The optimization problem, formulated as a mixed integer bilinear program, is implemented in the IDAES® integrated platform and solved to global optimality using Gurobi 9.5. Using this formulation, we determine the profitability of retrofitting an existing NGCC unit with the chosen capture system for multiple regions in the U.S. under two scenarios with different carbon prices. The results show that the optimal decision strongly depends on the region and on the carbon price, thereby demonstrating the importance of the inclusion of market signals in the design process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.