Abstract

The incorporation and optical properties of Mg in cubic GaN (c-GaN) epilayers grown by rf plasma-assisted molecular beam epitaxy on (100) GaAs are investigated by secondary ion mass spectroscopy and low-temperature photoluminescence (PL). By varying the Mg flux by more than four orders of magnitude, the incorporation of Mg saturates at high Mg flux and is limited to a value of about 5×1018 cm−3 due to the high volatility of Mg at growth temperature. In addition, we observe an accumulation of Mg at the GaN/GaAs interface due to a diffusion of Mg to the GaAs substrate. Low-temperature PL spectra reveal several well-separated lines. Besides a shallow acceptor level at EA≅0.230 eV, additional Mg-related deep defect levels indicate an incorporation of Mg at off-gallium sites or as complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.