Abstract

Among the multiple sequences available for functional magnetic resonance imaging (fMRI), the Steady State Free Precession (SSFP) sequence offers the highest signal-to-noise ratio (SNR) per unit time as well as distortion free images not feasible with the more commonly employed single-shot echo planar imaging (EPI) approaches. Signal changes occurring with activation in SSFP sequences reflect underlying changes in both irreversible and reversible transverse relaxation processes. The latter are characterized by changes in the central frequencies and widths of the inherent frequency distribution present within a voxel. In this work, the well-known frequency response of the SSFP signal intensity is generalized to include the widths and central frequencies of some common frequency distributions on SSFP signal intensities. The approach, using a previously unnoted series expansion, allows for a separation of reversible from irreversible transverse relaxation effects on SSFP signal intensity changes. The formalism described here should prove useful for identifying and modeling mechanisms associated with SSFP signal changes accompanying neural activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call