Abstract

In recent years, very long instruction word (VLIW) processor has attracted much attention in that it offers a high instruction level parallelism and reduces the hardware design complexity. In this paper, we present two fault-tolerant schemes for VLIW processors. The first one is termed as test-instruction scheme which is based on the concept of instruction duplication to detect the errors. The process of test-instruction scheme consists of the error detection, error rollback recovery and reconfiguration. The second approach is called self-checking scheme which adopts the concept of self-checking logic to detect the errors. A real-time error recovery procedure is developed to conquer the errors. We implement the proposed designs of fault-tolerant VLIW processor in VHDL and employ the fault injection and fault simulation to validate our schemes. The main contribution of this research is to present the complete frameworks from error detection to error recovery for fault-tolerant design of VLIW processors. Experience learned from this investigation is that the issues of error detection and error recovery entail considering together. Without taking both issues into account simultaneously, the outcomes may lead to the improper conclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.