Abstract
Current adaptive cruise control (ACC) systems adopt a fixed desired time headway, which often leads to abrupt speed changes in response to a close new leader after a cut-in or a lane change. These are disruptive maneuvers. In contrast, human drivers are willing to accept spacings much smaller than equilibrium values at the onset of these maneuvers and then gradually increase the spacing until they again reach equilibrium. This process, which typically lasts around 20 s or 30 s, is known as driver relaxation, which improves comfort and capacity. Therefore, this paper aims to incorporate relaxation into ACC systems. Based on the open-source factory-level ACC platform Openpilot by Comma.ai, the paper proposes a feasible relaxation model compatible with recent market ACC systems. The model is tested using simulation and road tests using a 2019 Honda Civic with its stock ACC hardware. The study further investigates the potential benefits of relaxation ACC on traffic operations. Comparative simulations suggest that incorporating relaxation into ACC can help: (i) reduce the magnitude of speed perturbations in both cut-in vehicles and followers; (ii) stabilize the lane-changing (LC) traffic by reducing the speed variance and preventing the lateral propagation of congestion; and (iii) increase the average flow speed and capacity after a bottleneck occurs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.