Abstract
This paper proposes the design of anti-windup compensator gain for improving stability of actuator input constrained linear multiple state delays systems. The system state delays are classified into mixed delay-dependent/delay-independent analysis and described by delay-differential equations. The real scalar delays are assumed to be fixed and unknown, but with known coefficient matrices. It is shown that the closed-loop system containing the controller plus the anti-windup gain can be modeled as a linear system with dead-zone nonlinearity. The formulation of anti-windup compensator gain is based on convex optimization using linear matrix inequalities (LMI) that ensure closed-loop asymptotic stability of the system while accounting upper-bound delays. The devised LMIs based on Lyapunov-Krasovskii functionals prove significantly less conservative in giving higher upper bounds delays in the formulation of anti-windup gain besides ensuring closed-loop asymptotic stability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have