Abstract

Contrary to recent reports, we show that the electronic properties of phosphorene nanotubes are surprisingly rich and much more complex than previously assumed. We find that all phosphorene nanotubes exhibit an intricate direct-to-indirect band gap transition as the nanotube diameter decreases, a unique property not identified in any prior studies (which claimed either direct or indirect band gaps only) that we uncover with large-scale DFT calculations. We address these previous inconsistencies by detailed analyses of orbital interactions, which reveal that the strain associated with decreasing the nanotube diameter causes a transition from a direct to an indirect band gap for all of the phosphorene nanotubes. We show that our findings are completely general, and extensive calculations across several exchange-correlation functionals verify our conclusions. Most importantly, our results and analyses resolve a long-standing question on the electronic properties of phosphorus nanotubes and bring closure to previously conflicting findings in these unique nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.