Abstract

We perform a comprehensive first-principles study of the electronic properties of phosphorene nanoribbons, phosphorene nanotubes, multilayer phosphorene, and heterobilayers of phosphorene and two-dimensional (2D) transition metal dichalcogenide (TMDC) monolayer. The tensile strain and electric-field effects on electronic properties of low-dimensional phosphorene nanostructures are also investigated. Our calculations show that zigzag phosphorene nanoribbons (z-PNRs) are metals, regardless of the ribbon width while armchair phosphorene nanoribbons (a-PNRs) are semiconductors with indirect bandgaps and the bandgaps are insensitive to variation of the ribbon width. We find that tensile compression (or expansion) strains can reduce (or increase) the bandgap of the a-PNRs while an in-plane electric field can significantly reduce the bandgap of a-PNRs, leading to the semiconductor-to-metal transition beyond certain electric field. For single-walled phosphorene nanotubes (SW-PNTs), both armchair and zigzag nanotubes are semiconductors with direct bandgaps. With either tensile strains or transverse electric field, similar behavior of bandgap modulation can arise as that for a-PNRs. It is known that multilayer phosphorene sheets are semiconductors with their bandgaps decreasing with increasing the number of multilayers. In the presence of a vertical electric field, the bandgaps of multilayer phosphorene sheets decrease with increasing the electric field, and the bandgap modulation is more significant with more layers. Lastly, heterobilayers of phosporene with a TMDC (MoS2 or WS2) monolayer are still semiconductors while their bandgaps can be reduced by applying a vertical electric field as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call