Abstract

The laser ablation and deposition of FeSiGaRu is studied. The deposited thin films are analyzed with Auger electron spectroscopy and Rutherford backscattering spectrometry. It is found that the gallium and ruthenium content of the thin films is strongly dependent on the laser fluence. At high laser fluences (6 J/cm2) the thin films are depleted of gallium due to preferential sputtering of the gallium atoms from the thin film. Near the threshold fluence (1.9 J/cm2) the films contain an excess of gallium due to preferential evaporation of gallium from the target. The latter conclusions are based on time-of-flight studies of ablated atoms and ions and on measurements of the atoms that are sputtered from the substrate by the incoming flux.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.