Abstract

Several meltable coordination polymers (CPs) that possess substantial advantages attributable to their high flexibility and processability have been developed recently; however, the melting mechanism and vitrification conditions of these materials are not yet fully understood. In this study, we synthesized meltable CPs [A][K(TCM)2] (A = onium cation, TCM = C(CN)3–) incorporating ionic liquid components and investigated their crystal structures and melting behaviors in detail. These CPs feature two- or three-dimensional anionic [K(TCM)2]n– frameworks incorporating onium cations. Each CP was found to undergo incongruent melting at a temperature between 73 and 192 °C to produce a heterogeneous mixture of the ionic liquid ([A][TCM]) and microcrystalline K[TCM]. Furthermore, they formed homogeneous liquids upon further heating to ∼240 °C. The melting points of these CPs were linearly correlated with those of their constituent ionic liquids. The vitrification of these materials upon rapid cooling from the molten state was further investigated. The cooling rates required for vitrification differed greatly between the CPs and were correlated with the cation flexibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.