Abstract

AbstractAlthough negative conclusions are presented implicitly in Normal Hybrid Probabilistic Programs (NHPP) [26] through the closed world assumption, representing and reasoning with explicit negation is needed in NHPP to allow the ability to reason with incomplete knowledge. In this paper we extend the language of NHPP to explicitly encode classical negation in addition to non-monotonic negation. The semantics of the extended language is based on the answer set semantics of traditional logic programming [9]. We show that the proposed semantics is a natural extension to the answer set semantics of traditional logic programming [9]. In addition, the proposed semantics is reduced to stable probabilistic model semantics of NHPP [26]. The importance of that is computational methods developed for NHPP can be applied to the proposed language. Furthermore, we show that some commonsense probabilistic knowledge can be easily represented in the proposed language.KeywordsLogic ProgramLogic ProgrammingClassical NegationIncomplete KnowledgeProbability IntervalThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call