Abstract

This paper presents a novel revision of the framework of Hybrid Probabilistic Logic Programming, along with a complete semantics characterization, to enable the encoding of and reasoning about real-world applications. The language of Hybrid Probabilistic Logic Programs framework is extended to allow the use of non-monotonic negation, and two alternative semantical characterizations are defined: stable probabilistic model semantics and probabilistic well-founded semantics. These semantics generalize the stable model semantics and well-founded semantics of traditional normal logic programs, and they reduce to the semantics of Hybrid Probabilistic Logic programs for programs without negation. It is the first time that two different semantics for Hybrid Probabilistic Programs with non-monotonic negation as well as their relationships are described. This proposal provides the foundational grounds for developing computational methods for implementing the proposed semantics. Furthermore, it makes it clearer how to characterize non-monotonic negation in probabilistic logic programming frameworks for commonsense reasoning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.