Abstract
A novel estimator for estimating the mean length of fibres is proposed for censored data observed in square shaped windows. Instead of observing the fibre lengths, we observe the ratio between the intensity estimates of minus-sampling and plus-sampling. It is well-known that both intensity estimators are biased. In the current work, we derive the ratio of these biases as a function of the mean length assuming a Boolean line segment model with exponentially distributed lengths and uniformly distributed directions. Having the observed ratio of the intensity estimators, the inverse of the derived function is suggested as a new estimator for the mean length. For this estimator, an approximation of its variance is derived. The accuracies of the approximations are evaluated by means of simulation experiments. The novel method is compared to other methods and applied to real-world industrial data from nanocellulose crystalline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.