Abstract

An inclined slot-excited antenna (ISLAN) electron cyclotron resonance (ECR) plasma source is newly designed and constructed for higher flux hyperthermal neutral beam (HNB) generation. The developed ISLAN source is modified from vertical slot-excited antenna (VSLAN) source in two aspects: one is the use of inclined slots instead of vertical slots, and the other is a cusp magnetic field configuration rather than a toroidal configuration. Such modifications allow us to have more uniform arrangement of slots and magnets, then enabling plasma generation more uniform and thinner. Moreover, ECR plasma allows higher ionization rate, enabling plasma density higher even in submillitorr pressures, therefore decreasing the collision rate and∕or the reionization rate of the reflected atoms while passing through the plasma, and eventually getting higher flux of HNBs. In this paper, we report the design features and the plasma characteristics of the ISLAN source by doing plasma measurements and electromagnetic simulations. It was found that ISLAN source can be a high potential source for larger flux HNB generation; the source was found to give higher plasma densities and better uniformities than inductively coupled plasma source, particularly in low pressure ranges. Also, it is important that using ISLAN gives easier matching and better stability, i.e., ISLAN shows similar field patterns and good plasma symmetries irrespective of the variations of the mean diameter of the ring resonator and∕or the presence of a limiter or a reflector, and the operating pressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.