Abstract

Incipient fault detection and diagnosis in turbine engines is key to effective maintenance and improved availability of systems dependent on these engines. In this paper, we present a novel method for incipient fault detection and diagnosis using Hidden Markov Models (HMMs). In particular, we focus on engine faults that are manifest in transient operating conditions such as engine startup and acceleration. HMMs are stochastic signal models that are effective in modeling transient signals. They are developed with engine data collected under nominal operating conditions. Engine data representing different fault conditions are used to develop the fault HMMs; a separate model is developed for each of the faults. Once the nominal and fault HMMs are developed, new engine data collected from the engine are evaluated against the HMMs and a determination is made whether a fault is indicated. Here, we demonstrate our HMM-based fault detection and diagnosis approach on engine speed profiles taken from a real engine. Further, the effectiveness of the HMM-based approach is compared with a neural-network-based approach and a method based on using principal component analysis in conjunction with a neural network approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.