Abstract
Diagnosis of incipient faults for electronic systems, especially for analog circuits, is very important, yet very difficult. The methods reported in the literature are only effective on hard faults, i.e., short-circuit or open-circuit of the components. For a soft fault, the fault can only be diagnosed under the occurrence of large variation of component parameters. In this paper, a novel method based on linear discriminant analysis (LDA) and hidden Markov model (HMM) is proposed for the diagnosis of incipient faults in analog circuits. Numerical simulations show that the proposed method can significantly improve the recognition performance. First, to include more fault information, three kinds of original feature vectors, i.e., voltage, autoregression-moving average (ARMA), and wavelet, are extracted from the analog circuits. Subsequently, LDA is used to reduce the dimensions of the original feature vectors and remove their redundancy, and thus, the processed feature vectors are obtained. The LDA is further used to project three kinds of the processed feature vectors together, to obtain the hybrid feature vectors. Finally, the hybrid feature vectors are used to form the observation sequences, which are sent to HMM to accomplish the diagnosis of the incipient faults. The performance of the proposed method is tested, and it indicates that the method has better recognition capability than the popularly used backpropagation (BP) network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.