Abstract

BackgroundAccumulation of detrimental mutations in small populations leads to inbreeding depression of fitness traits and a higher frequency of genetic defects, thus increasing risk of extinction. Our objective was to quantify the magnitude of inbreeding depression for survival at birth, in a closed rabbit population under long-term selection.MethodsWe used an information theory-based approach and multi-model inference to estimate inbreeding depression and its purging with respect to the trait ‘kit survival at birth’ over a 25-year period in a closed population of Pannon White rabbits, by analysing 22,718 kindling records. Generalised linear mixed models based on the logit link function were applied, which take polygenic random effects into account.ResultsOur results indicated that inbreeding depression occurred during the period 1992–1997, based on significant estimates of the z-standardised classical inbreeding coefficient z.FL (CI95% − 0.12 to − 0.03) and of the new inbreeding coefficient of the litter z.FNEWL (CI95% − 0.13 to − 0.04) as well as a 59.2% reduction in contributing founders. Inbreeding depression disappeared during the periods 1997–2007 and 2007–2017. For the period 1992–1997, the best model resulted in a significantly negative standardised estimate of the new inbreeding coefficient of the litter and a significantly positive standardised estimate of Kalinowski’s ancestral inbreeding coefficient of the litter (CI95% 0.01 to 0.17), which indicated purging of detrimental load. Kindling season and parity had effects on survival at birth that differed across the three periods of 1992–1997, 1997–2007 and 2007–2017.ConclusionsOur results support the existence of inbreeding depression and its purging with respect to kit survival at birth in this Pannon White rabbit population. However, we were unable to exclude possible confounding from the effects of parity and potentially other environmental factors during the study period, thus our results need to be extended and confirmed in other populations.

Highlights

  • Accumulation of detrimental mutations in small populations leads to inbreeding depression of fitness traits and a higher frequency of genetic defects, increasing risk of extinction

  • In the Kalinowski approach, we considered all possible combinations of model elements with respect to the inclusion of z.FNEWD, z.FNEWL, z.FA-KL, season, parity, and animal

  • Inbreeding depression for survival of kits at birth was observed in the first part (1992–1997) of a 25-year study period (1992–2017) in a closed Pannon White rabbit population

Read more

Summary

Introduction

Accumulation of detrimental mutations in small populations leads to inbreeding depression of fitness traits and a higher frequency of genetic defects, increasing risk of extinction. Inbreeding depression has been documented in wild animals [1, 2], animals in captivity [3], laboratory animals [4], domesticated animals [5], and humans [6] This important evolutionary force threatens the survival of genetically small populations. In some species (e.g. cattle), the recent introduction of genomics has intensified artificial selection and accelerated an increase in homozygosity and accumulation of detrimental load [16, 17]. This has increased interest in the question of whether purging can be achieved practically, since breeders seek to reduce detrimental load in animal populations

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.