Abstract

Quantum dot (QD) emitters on silicon platforms have been considered as a fascinating approach to building next-generation quantum light sources toward unbreakable secure communications. However, it has been challenging to integrate position-controlled QDs operating at the telecom band, which is a crucial requirement for practical applications. Here, we report monolithically integrated InAsP QDs embedded in InP nanowires on silicon. The positions of QD nanowires are predetermined by the lithography of gold catalysts, and the 3D geometry of nanowire heterostructures is precisely controlled. The InAsP QD forms atomically sharp interfaces with surrounding InP nanowires, which is in situ passivated by InP shells. The linewidths of the excitonic (X) and biexcitonic (XX) emissions from the QD and their power-dependent peak intensities reveal that the proposed QD-in-nanowire structure could be utilized as a non-classical light source that operates at silicon-transparent wavelengths, showing a great potential for diverse quantum optical and silicon photonic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.