Abstract
InAs gate-all-around (GAA) nanowire MOSFETs are experimentally demonstrated for the first time by a top-down approach <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">[1-3]</sup> . Thanks to the well-controlled nanowire release process and the novel ALD high-k/metal gate stack process, InAs nFETs with channel length (L <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ch</inf> ) ranging from 380 to 20 nm and nanowire width (W <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">NW</inf> ) from 60 to 20 nm are achieved. With an EOT of 3.9 nm, high drain current of 4.3 A/mm at V <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ds</inf> = V <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">gs</inf> = 2 V and maximum transconductance (g <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">max</inf> ) of 1.6 S/mm at V <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ds</inf> = 1 V are obtained in a device with W <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">NW</inf> = 20 nm and L <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ch</inf> = 180 nm, normalized by the perimeter of the nanowires. A detailed scalability study (V <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">TH</inf> , g <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</inf> , I <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ds</inf> vs. L <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ch</inf> ) was carried out. The devices in this study show strong dependence on the nanowire width and smaller nanowire size offers much enhanced electrical performance and better immunity from the short channel effects (SCEs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.