Abstract
The strain-compensation (SC) technique to reduce the accumulation of strain is a promising approach to increase the design flexibility as well as the performance of quantum dot (QD) lasers. Here we have studied the application of tensile-strained ultra-thin GaP layers into multiple stacked InAs/GaAs QD grown by MBE. XRD analysis shows the controllability of the average strain in multiple-stacked QD active layer, revealing a reduction in accumulated strain. Fabricated QD laser diodes including thinner QD active layers realized by SC technology show a narrower vertical far-field angle and an increased small signal modulation bandwidth without loss of gain. Cross-sectional SEM image of SC-QD LD active region
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.