Abstract

It has been shown that inactivation of several enzymes precedes overall conformational changes of the enzyme molecules as a whole during denaturation [Tsou (1993) Science, 262, 380-381]. However, the relation between inactivation, loss of allosteric properties of oligomeric enzymes and unfolding of the enzyme molecule during denaturation remain little explored. These have now been compared for D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and fructose-1,6-bisphosphatase (FruP2ase) during denaturation by guanidinium chloride (GdmCl). GAPDH is completely inactivated at 0.3 M GdmCl but at this GdmCl concentration it still binds NAD+ with negative co-operativity. At 0.4 M GdmCl, inactivation of FruP2ase reaches completion whereas its allosteric properties, including the heterotropic effect of AMP inhibition and K+ activation with positive co-operativity, are only partially affected. Much higher GdmCl concentrations are required to bring about unfolding of the overall structures of both enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.