Abstract

It has been previously reported that, during denaturation of creatine kinase by guanidinium chloride (GdmCl) or urea [Tsou (1986), Trends Biochem. Sci. 11, 427-429], inactivation occurs before noticeable conformational change can be detected, and it is suggested that the conformation at the active site is more easily perturbed and hence more flexible than the molecule as a whole. In this study, the thiol and amino groups at or near the active site of creatine kinase are labelled with o-phthalaldehyde to form a fluorescent probe. Both the emission intensity and anisotropy decrease during denaturation indicating exposure of this probe and increased mobility of the active site. The above conformational changes take place together with enzyme inactivation at lower GdmCl concentrations than required to bring about intrinsic fluorescence changes of the enzyme. At the same GdmCl concentration, the rate of exposure of the probe is comparable with that of inactivation and is several orders of magnitude faster than that for the unfolding of the molecule as a whole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.