Abstract
Emerging evidence supports an inhibitory role for vitamin D in colorectal carcinogenesis; however, the mechanism remains unclear. The adenomatous polyposis coli (APC)/β-catenin pathway plays a critical role in colorectal carcinogenesis. The purpose of our study is to explore the interactions of vitamin D and APC/β-catenin pathways in intestinal tumor development. APC(min/+) mice with genetic inactivation of the vitamin D receptor (VDR) were generated through breeding. Intestinal tumorigenesis was compared between APC(min/+) and APC(min/+) VDR(-/-) mice at different ages. No differences were seen in the number of small intestinal and colonic tumors between APC(min/+) and APC(min/+) VDR(-/-) mice aged 3, 4, 6 and 7 months. The size of the tumors, however, was significantly increased in APC(min/+) VDR(-/-) mice in all age groups. Immunostaining showed significant increases in β-catenin, cyclin D1, phosphorylated Stat-3 and MSH-2 levels and decreases in Stat-1 in APC(min/+) VDR(-/-) tumors compared to APC(min/+) tumors. These observations suggest that VDR signaling inhibits tumor growth rather than tumor initiation in the intestine. Thus, the increased tumor burden in APC(min/+) VDR(-/-) mice is likely due to the loss of the growth-inhibiting effect of VDR. This study provides strong evidence for the in vivo relevance of the interaction demonstrated in vitro between the vitamin D and β-catenin signaling pathways in intestinal tumorigenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.