Abstract

The adenomatous polyposis coli (APC) gene is mutated in familial adenomatous polyposis. Mice with a heterozygous APC(Min) mutation develop multiple intestinal neoplasia (Min) leading to premature death. Early in colorectal carcinogenesis, APC(Min/+) mice show enhanced Akt-mammalian target of rapamycin (mTOR) signaling, which is paralleled by upregulation of oncogenic K(+) channels. In this study, we tested the effect of mTOR inhibition with rapamycin on tumor formation in APC(Min/+) mice and evaluated ion channel regulation. We found that continuous long-term rapamycin treatment of APC(Min/+) mice dramatically inhibits intestinal neoplasia. Moreover, although untreated APC(Min/+) mice lose weight, experience intestinal bleeding and succumb to multiple neoplasia by 22.3+/-1.4 weeks of age, mice treated with rapamycin maintain stable weight and survive long term (39.6+/-3.4 weeks), with more than 30% surviving >1 year. Impressively, abnormalities in colonic electrolyte transport typical for APC(Min/+) mice are abolished, along with the suppression of epithelial Na(+) channel (ENaC) and oncogenic K(+) ion channels BK, Elk1 and Erg1, both functionally and at mRNA levels. These results show that continuous prophylaxis by rapamycin markedly inhibits the development of APC mutation-related polyposis, and suggest a novel contributing mechanism of action through the blockade of intestinal oncogenic ion channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.