Abstract

The experience of reward entails both positive affect and motivation. While the brain regions responsible for these distinct aspects of reward are dissociable from each other, the paraventricular nucleus of the thalamus (PVT) may play a role in both. To investigate the role of the PVT in both affect and motivation, and to identify neuropeptides that might mediate these effects. Male rats were tested for conditioned place preference following temporary inactivation of the anterior or posterior PVT with local injections of the GABAB and GABAA agonists, baclofen + muscimol. They were tested for sucrose seeking under a fixed ratio 3 (FR3) schedule of reinforcement and after extinction, following injection into the posterior PVT of baclofen + muscimol or saline vehicle. Finally, quantitative real-time PCR was used to examine local neuropeptide gene expression following injection into the posterior PVT of baclofen + muscimol or saline vehicle. Conditioned place preference was induced by temporary inactivation of the posterior but not anterior PVT. While sucrose seeking under an FR3 schedule of reinforcement was unaffected by inactivation of the posterior PVT, reinstatement of sucrose seeking was promoted by posterior PVT inactivation. Local gene expression of pituitary adenylate cyclase-activating polypeptide (PACAP), but not enkephalin or neurotensin, was reduced following inactivation of the posterior PVT. Temporary inactivation of the posterior PVT affects both affect and motivation as well as local gene expression of PACAP. These results suggest that the posterior PVT is one brain region that may participate in both major aspects of reward.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call