Abstract
Nontypeable Haemophilus influenzae is a major cause of localized respiratory tract disease and initiates infection by colonizing the nasopharynx. Colonization requires adherence to host epithelial cells, which is mediated by surface proteins such as the Hap adhesin. In this study, we identified a relationship between Hap levels in the outer membrane and lipopolysaccharide (LPS) biosynthesis enzymes. We found that mutation of the rfaF, pgmB, lgtC, kfiC, orfE, rfbP, lsgB, or lsgD genes, which are involved in the synthesis of the LPS oligosaccharide core in H. influenzae strain Rd/HapS243A, resulted in loss of Hap in the bacterial outer membrane and a decrease in hap transcript levels. In contrast, the same mutations had no effect on outer membrane localization of H. influenzae P5 or IgA1 protease or levels of p5 or iga1 transcripts, suggesting a Hap-specific effect. Elimination of the HtrA periplasmic protease resulted in a return of Hap to the outer membrane and restoration of hap transcript levels. Consistently, in lgtC phase-off bacteria, Hap was absent from the outer membrane, and hap transcript levels were reduced. Hap localization and hap transcript levels were not related to LPS size but to the functions of the LPS biosynthesis enzymes themselves. We speculate that the lack of certain LPS biosynthesis enzymes causes Hap to mislocalize and accumulate in the periplasm, where it is degraded by HtrA. This degradation then leads to a decrease in hap transcript levels. Together, these data highlight a novel interplay between Hap and LPS biosynthesis that can influence H. influenzae interactions with the host.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.