Abstract
Thrombin-activable fibrinolysis inhibitor (TAFI) is present in the circulation as an inactive zymogen. Thrombin converts TAFI to a carboxypeptidase B-like enzyme (TAFIa) by cleaving at Arg(92) in a process accelerated by the cofactor, thrombomodulin. TAFIa attenuates fibrinolysis. TAFIa can be inactivated by both proteolysis by thrombin and spontaneous temperature-dependent loss of activity. The identity of the thrombin cleavage site responsible for loss of TAFIa activity was suggested to be Arg(330), but site-directed mutagenesis of this residue did not prevent inactivation of TAFIa by thrombin. In this study we followed TAFI activation and TAFIa inactivation by thrombin/thrombomodulin in time and characterized the cleavage pattern of TAFI using matrix-assisted laser desorption ionization mass spectrometry. Mass matching of the fragments revealed that TAFIa was cleaved at Arg(302). Studies of a mutant R302Q-TAFI confirmed identification of this thrombin cleavage site and, furthermore, suggested that inactivation of TAFIa is based on its conformational instability rather than proteolytic cleavage at Arg(302).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have