Abstract

Parvovirus B19 (B19V) is a common contaminant of human plasma donations. Three B19V genotypes have been defined based on their DNA sequence. Reliable detection of Genotype 3 DNA has proved problematic because of unexpected sequence variability. B19V Genotype 3 is found primarily in West Africa, but was recently detected in plasma from a North American donor. The safety of plasma-derived medicinal products, with respect to B19V, relies on exclusion of high-titer donations, combined with virus clearance at specific manufacturing steps. Studies on inactivation of B19V are difficult to perform and inactivation of Genotype 3 has not yet been investigated. Inactivation of B19V Genotypes 3 and 1 by pasteurization of human serum albumin and incubation at low pH was studied using a cell culture assay for infectious virus particles. Infected cells were detected by reverse transcription-polymerase chain reaction analysis of virus capsid mRNA. Neutralization of B19V Genotype 3 was investigated using human immunoglobulin preparations. Genotypes 1 and 3 displayed comparable inactivation kinetics during pasteurization of albumin at 56°C, as well as by incubation at various low-pH conditions (pH 4.2 at 37°C and pH 4.5 at 23°C, respectively) used in immunoglobulin manufacturing. Both Genotypes were readily neutralized by pooled immunoglobulin preparations of North American or European origin. Pasteurization and low-pH treatment were equally effective in inactivating B19V Genotypes 1 and 3. Neutralization experiments indicated that pooled immunoglobulin of North American or European origin is likely to be equally effective in treatment of disease induced by both genotypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call