Abstract

Transfusion-related acute lung injury (TRALI) remains a major contributor to transfusion-associated mortality. While the pathogenesis of TRALI remains unclear, there is evidence of a role for blood components. We therefore investigated the potential effects of fresh frozen plasma (FFP), cryoprecipitate, and extracellular vesicles (EVs) derived from these blood components, on the viability of human lung microvascular endothelial cells (HLMVECs) in vitro. EVs were isolated from FFP and cryoprecipitate using size-exclusion chromatography and characterized by nanoparticle tracking analysis, western blotting, and transmission electron microscopy. The potential effects of these blood components and their EVs on HLMVEC viability (determined by trypan blue exclusion) were examined in the presence and absence of neutrophils, either with or without prior treatment of HLMVECs with LPS. EVs isolated from FFP and cryoprecipitate displayed morphological and biochemical properties conforming to latest international criteria. While FFP, cryoprecipitate, and EVs derived from FFP, each reduced HLMVEC viability, no effect was observed for EVs derived from cryoprecipitate. Our findings demonstrate clear differences in the effects of FFP, cryoprecipitate, and their respective EVs on HLMVEC viability in vitro. Examination of the mechanisms underlying these differences may lead to an improved understanding of the factors that promote development of TRALI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.