Abstract

Herbicide and antibiotic tolerance genes serve as useful selectable markers for the development of transgenic plants expressing other transgenes. It may be desirable for regulatory or safety reasons to silence the herbicide tolerance trait after transformants have been selected. However, because the genes of interest and the marker gene are usually tightly linked, traditional segregation-based strategies for elimination of undesirable transgenes are usually unsuccessful. Here, we created Nicotiana tabacum plants that carry a single copy of a Cas9 gene, a nuclease in the clustered regularly interspaced short palindromic repeats (CRISPR) system, physically linked to the selectable marker gene bar for tolerance to the herbicide glufosinate (Basta, Liberty). Here, bar was targeted within the genome by introducing bar-specific single guide RNAs (sgRNAs) to the N. tabacum line in vitro, resulting in abolishment of the glufosinate-tolerance trait in mature plants. Sequence analysis of the bar gene revealed a frame-shift mutation at a sgRNA target site, confirming efficacy of the strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.