Abstract

Neither the actual in vivo tissue temperatures reached with 90 W/4 s-very high-power short-duration (vHPSD) ablation for atrial fibrillation nor the safety and efficacy profile have been fully elucidated. We conducted a porcine study (n = 15) in which, after right thoracotomy, we implanted 6-8thermocouples epicardially in the superior vena cava, right pulmonary vein, and esophagus close to the inferior vena cava. We compared tissue temperatures close to a QDOT MICRO catheter, between during 90 W/4 s-vHPSD ablation during ablation index (AI: target 400)-guided 50 W-HPSD ablation, both targeting a contact force of 8-15 g. Maximum tissue temperature reached during 90 W/4 s-vHPSD ablation did not differ significantly from that during 50 W-HPSD ablation (49.2 ± 8.4°C vs. 50.0 ± 12.1°C; p = .69) and correlated inversely with distance between the catheter tip and the thermocouple, regardless of the power settings (r = -0.52 and r = -0.37). Lethal temperature (≥50°C) was best predicted at a catheter tip-to-thermocouple distance cut-point of 3.13 and 4.27 mm, respectively. All lesions produced by 90 W/4 s-vHPSD or 50 W-HPSD ablation were transmural. Although there was no difference in the esophageal injury rate (50% vs. 66%, p = .80), the thermal lesion was significantly shallower with 90 W/4 s-vHPSD ablation than with 50W-HPSD ablation (381.3 ± 127.3 vs. 820.0 ± 426.1 μm from the esophageal adventitia; p = .039). Actual tissue temperatures reached with 90 W/4 s-vHPSD ablation appear similar to those with AI-guided 50 W-HPSD ablation, with the distance between the catheter tip and target tissue being shorter for the former. Although both ablation settings may create transmural lesions in thin atrial tissues, any resulting esophageal thermal lesions appear shallower with 90 W/4 s-vHPSD ablation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call