Abstract

BackgroundThe purpose of this study was to evaluate the utility of a noninvasive ultrasound-based method, vibro-acoustography (VA), for thyroid imaging and determine the feasibility and challenges of VA in detecting nodules in thyroid.MethodsOur study included two parts. First, in an in vitro study, experiments were conducted on a number of excised thyroid specimens randomly taken from autopsy. Three types of images were acquired from most of the specimens: X-ray, B-mode ultrasound, and vibro-acoustography. The second and main part of the study includes results from performing VA and B-mode ultrasound imaging on 24 human subjects with thyroid nodules. The results were evaluated and compared qualitatively.ResultsIn vitro vibro-acoustography images displayed soft tissue structures, microcalcifications, cysts and nodules with high contrast and no speckle. In this group, all of US proven nodules and all of X-ray proven calcifications of thyroid tissues were detected by VA. In vivo results showed 100% of US proven calcifications and 91% of the US detected nodules were identified by VA, however, some artifacts were present in some cases.ConclusionsIn vitro and in vivo VA images show promising results for delineating the detailed structure of the thyroid, finding nodules and in particular calcifications with greater clarity compare to US. Our findings suggest that, with further development, VA may be a suitable imaging modality for clinical thyroid imaging.

Highlights

  • The purpose of this study was to evaluate the utility of a noninvasive ultrasound-based method, vibro-acoustography (VA), for thyroid imaging and determine the feasibility and challenges of VA in detecting nodules in thyroid

  • US imaging is extremely useful in guiding fine needle aspiration biopsy (FNAB); its role in predicting malignancy is limited such that ultrasound-guided FNAB is carried out routinely in the evaluation of thyroid nodules [1]

  • As the ultrasound beams are scanned across the object, the VA image of the object is constructed on the display

Read more

Summary

Introduction

The purpose of this study was to evaluate the utility of a noninvasive ultrasound-based method, vibro-acoustography (VA), for thyroid imaging and determine the feasibility and challenges of VA in detecting nodules in thyroid. Conventional ultrasound characteristics of thyroid nodules are not sufficiently specific to reliably determine the malignant potential of thyroid nodules [2]. FNAB is an invasive procedure and technique accuracy depends largely on the skill of the aspirator, the expertise of the cytologist, and the difficulty in distinguishing some benign cellular adenomas from their malignant counterparts and wide variability in interpretative skill regarding cytopathology of the thyroid nodule. Because of these limitations, the results are indeterminate in approximately 15-20% of cases. Analysis of recent data from some series suggests a false-negative rate of up to 11%, a false-positive rate of up to 8%, with a sensitivity of about 80%, and a specificity of 73% [4,5,6,7,8]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call