Abstract

Several studies with bacteria and in vitro mammalian systems have provided evidence of the roles of two thiol-based conjugation systems, glutathione (GSH) transferase and O(6)-alkylguanine DNA-alkyltransferase (AGT), in the bioactivation of the bis-electrophiles 1,2-dibromoethane and 1,2,3,4-diepoxybutane (DEB), the latter an oxidation product of 1,3-butadiene. The in vivo relevance of these conjugation reactions to biological activity in mammals has not been addressed, particularly with DEB. In this work, we used transgenic Big Blue mice, utilizing the cII gene, to examine the effects of manipulation of conjugation pathways on liver mutations arising from dibromoethane and DEB in vivo. Treatment of the mice with butathionine sulfoxime (BSO) prior to dibromoethane lowered hepatic GSH levels, dibromoethane-GSH DNA adduct levels (N(7)-guanyl), and the cII mutation frequency. Administration of O(6)-benzylguanine (O(6)-BzGua), an inhibitor of AGT, did not change the mutation frequency. Depletion of GSH (BSO) and AGT (O(6)-BzGua) lowered the mutation frequency induced by DEB, and BSO lowered the levels of GSH-DEB N(7)-guanyl and N(6)-adenyl DNA adducts. Our results provide evidence that the GSH conjugation pathway is a major in vivo factor in dibromoethane genotoxicity; both GSH conjugation and AGT conjugation are major factors in the genotoxicity of DEB. The latter findings are considered to be relevant to the carcinogenicity of 1,3-butadiene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.