Abstract

Chemoresistance to O(6)-alkylating agents is a major barrier to successful treatment of melanoma. It is mainly due to a DNA repair suicide protein, O(6)-alkylguanine-DNA alkyltransferase (AGT). Although AGT inactivation is a powerful clinical strategy for restoring tumor chemosensitivity, it was limited by increased toxicity to nontumoral cells resulting from a lack of tumor selectivity. Achieving enhanced chemosensitization via AGT inhibition preferably in the tumor should protect normal tissue. To this end, we have developed a strategy to target AGT inhibitors. In this study, we tested a new potential melanoma-directed AGT inhibitor [2-amino-6-(4-iodobenzyloxy)-9-[4-(diethylamino) ethylcarbamoylbenzyl] purine; IBgBZ] designed as a conjugate of O(6)-(4-iododbenzyl)guanine (IBg) as the AGT inactivator and a N,N-diethylaminoethylenebenzamido (BZ) moiety as the carrier to the malignant melanocytes. IBgBZ demonstrated AGT inactivation ability and potentiation of O(6)-alkylating agents (cystemustine, a chloroethylnitrosourea) in M4Beu highly chemoresistant human melanoma cells both in vitro and in tumor models. The biodisposition study on mice bearing B16 melanoma, the standard model for the evaluation of melanoma-directed agents, and the secondary ion mass spectrometry imaging confirmed the concentration of IBgBZ in the tumor and in particular in the intracytoplasmic melanosomes. These results validate the potential of IBgBZ as a new, more tumor-selective, AGT inhibitor in a strategy of melanoma-targeted therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.