Abstract

BackgroundSpinal motion is facilitated by a “three joint complex”, two facet joints and one intervertebral disc at each spinal level. Both the intervertebral discs and facet joints are subject to natural age-related degeneration, and while these processes may be linked it is not clear how. As instability in the disc could underlie facet arthritis, we evaluated the hypothesis that the discs and facet joints are mechanically coupled. MethodsWe recruited young, asymptomatic volunteers (n = 10; age: mean 25, range 21–30 years; BMI: mean 23.1, range 19.1–29.0 kg/m2) and applied magnetic resonance imaging (MRI) and three-dimensional (3D) modeling to measure facet and disc composition (MRI T1rho relaxation time) and facet and disc function (diurnal changes in facet space width, disc height) in the lumbar spine. FindingsWe found that facet space width was positively associated with facet T1rho relaxation time (fluid content) and negatively associated with disc T1rho, and that facets adjacent to degenerated discs were significantly thicker and had significantly higher T1rho. Furthermore, the diurnal change in wedge angle was positively associated the diurnal change in facet space width, while disc degeneration, the diurnal change in disc height, and facet T1rho were not. InterpretationThese data demonstrate an interdependence between disc and facet health, but not between disc and facet mechanical function. Furthermore, the weak relationship between facet cartilage composition and in vivo function suggests that other factors, like spinal curvature, determine in vivo spine mechanics. Future work in symptomatic or aged populations are warranted to confirm these findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call