Abstract
BackgroundFalls among the elderly are a major societal problem. While observations of medium-distance walking using inertial sensors identified potential fall predictors, classifying individuals at risk based on single gait cycles remains elusive. This challenge stems from individual variability and step-to-step fluctuations, making accurate classification difficult. MethodsWe recruited 44 participants, equally divided into high and low fall-risk groups. A smartphone secured on their second sacral spinous process recorded data during indoor walking. Features were extracted at each gait cycle from a 6-dimensional time series (tri-axial angular velocity and tri-axial acceleration) and classified using the gradient boosting decision tree algorithm. FindingsMean accuracy across five-fold cross-validation was 0.936. “Age” was the most influential individual feature, while features related to acceleration in the gait direction held the highest total relative importance when aggregated by axis (0.5365). InterpretationCombining acceleration, angular velocity data, and the gradient boosting decision tree algorithm enabled accurate fall risk classification in the elderly, previously challenging due to lack of discernible features. We reveal the first-ever identification of three-dimensional pelvic motion characteristics during single gait cycles in the high-risk group. This novel method, requiring only one gait cycle, is valuable for individuals with physical limitations hindering repetitive or long-distance walking or for use in spaces with limited walking areas. Additionally, utilizing readily available smartphones instead of dedicated equipment has potential to improve gait analysis accessibility.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have