Abstract

Gamma aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the human brain. It plays a decisive role in a variety of nervous system disorders, such as anxiety disorders, epilepsy, schizophrenia, insomnia, and many others. The reproducibility of GABA quantification results obtained with a single-voxel spectroscopy J-difference editing sequence with Point Resolved Spectroscopy localization (MEGA-PRESS) was determined on a 3.0 Tesla MR scanner in healthy adults. Eleven volunteers were measured in long- and short-term intervals. Intra- and inter-subject reproducibility were evaluated. Internal referencing of GABA+ to total creatine (tCr) and water (H 2O), as well as two different post-processing methods for the evaluation (signal integration and time-domain fitting) were compared. In all subjects lower coefficient of variation and therefore higher reproducibility can be observed for fitting compared to integration. The GABA+/tCr ratio performs better than the GABA+/H 2O ratio or GABA+ without internal referencing for both fitting and integration (GABA+/tCr: 13.3% and 17.0%; GABA+/H 2O: 15.0% and 17.8%; GABA+: 19.2% and 21.7%). Four-day measurements on three subjects showed higher intra- than inter-subject reproducibility (GABA+/tCr ∼10–12%). With a coefficient of variation of about 13% for inter-subject and 10–12% for intra-subject variability of GABA+/tCr, this technique seems to be a precise tool that can detect GABA confidently. The results of this study show the reproducibility limitations of GABA quantification in vivo, which are necessary for further clinical studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.