Abstract
Photoacoustic (PA) imaging is an attractive imaging modality for sensitive and depth imaging of biomolecules with high resolution in vivo. The aim of this study was to evaluate the effectiveness of an anti-epidermal growth factor receptor (EGFR) monoclonal antibody (panitumumab; Pan) labeled with indocyanine green derivative (ICG-EG4-Sulfo-OSu), Pan-EG4-ICG, as a PA imaging probe to target cancer-associated EGFR. In vitro PA imaging studies demonstrated that Pan-EG4-ICG yielded high EGFR-specific PA signals in EGFR-positive cells. To determine the optimal injection dose and scan timing, we investigated the biodistribution of radiolabeled Pan-EG4-ICG (200–400 μg) in A431 tumor (EGFR++)-bearing mice. The highest tumor accumulation (29.4% injected dose/g) and high tumor-to-blood ratio (2.1) was observed 7 days after injection of Pan-EG4-ICG (400 μg). In in vivo PA imaging studies using Pan-EG4-ICG (400 μg), the increase in PA signal (114%) was observed in A431 tumors inoculated in the mammary glands 7 days post-injection. Co-injection of excess Pan resulted in a 35% inhibition of this PA signal, indicating the EGFR-specific accumulation. In conclusion, the ICG-labeled monoclonal antibody (i.e., panitumumab) has the potential to enhance target-specific PA signal, leading to the discrimination of aggressiveness and metastatic potential of tumors and the selection of effective therapeutic strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.