Abstract
In the uterus, the characteristics of smooth muscle contraction and the electrical activity that drives this contraction depends on hormonal cycles, and pregnancy status. Smooth muscle contraction is initiated by a change in membrane electrical potential, due to the flux of ions in and out of the intracellular space. Chains of action potentials throughout a section of muscle can result in coordinated contraction events. In this study, flexible printed circuit electrode arrays were applied to measure the bioelectric signals on the surface of a rat uterus in vivo. Variations in the electrical activity were quantified, including intermittent periods of activity and inactivity, which contain both slow-wave type activity (0.039 Hz ±0.017 Hz) and faster, spike-like activity (3.26 Hz ±0.27 Hz). The spike activity initiated at the ovarian end of the uterine horn, spreading towards the cervical end with a propagation velocity of 5.34 ± 2.32 mm [Formula: see text]. In conclusion, this pilot study outlines a new method of in vivo measurement of uterine electrical activity in rats. Clinical Relevance- Measurement of bioelectrical data using in vivo techniques provides insight into the electromechanical function of uterine smooth muscle, which could provide insights into what drives coordinated contraction in the uterus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.