Abstract

Fractional laser treatment is commonly used for dermatological applications, enabling effective induction of collagen regeneration and significantly reducing recovery time. However, it is challenging to observe laser-induced photodamage beneath the tissue surface in vivo, making the non-invasive evaluation of treatment outcomes difficult. For in vivo real-time study of the photodamage induced by fractional pulsed CO2 and Nd:YAG lasers commonly utilized for clinical therapy, a portable spectral-domain optical coherence tomography (SD-OCT) system was implemented for clinical studies. The photodamage caused by two lasers, including photothermal and photoacoustic effects, was investigated using OCT, together with the correlation between photodamage and exposure energy. Additionally, to investigate the change in the optical properties of tissue due to photodamage, the attenuation coefficients and damaged areas of normal skin and laser-treated skin were estimated for comparison. Finally, the recovery of the exposed skin with both lasers was also compared using OCT. The results show that OCT can be a potential solution for in vivo investigation of laser-induced tissue damage and quantitative evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.