Abstract

Optical coherence tomography (OCT) is a useful tool for the evaluation of structure and function of the kidney, but the image quality can be effected by many factors. The objective of this study was to assess the image quality of different OCT systems in OCT imaging of the living kidney. One swept-source OCT (SSOCT) of 1300 nm, one spectral domain OCT (SDOCT) of 1300 nm and another of 900 nm were used. A FeO phantom was used to establish the point spread function (PSF). Rat kidneys were imaged for image quality assessment. Light penetration in the kidney and the optical attenuation coefficient were also evaluated. The quantification of uriniferous tubules was carried out via the threshold segmentation of 3D OCT images. The quality of kidney images was resolution dependent. SDOCT of 900 nm showed higher peak signal-to noise ratio and dynamic range. The spatial resolution in the light field could be derived from the PSF distribution along three mutually orthogonal axes. In conjunction with the PSF, the Lucy-Richardson algorithm could improve image quality but could not reveal more microstructural information. The penetration depth of 1300 nm was deeper than that of 900 nm. The attenuation coefficient of the kidney was 29 cm-1 at 1300 nm and 50 cm-1 at 900 nm (P < 0.001). More accurate measurement of uriniferous tubules was achieved with the SDOCT-900 due to its higher resolution. Both SSOCT and SDOCT systems could be useful for imaging uriniferous tubules in the superficial layers of the cortex. The OCT image quality was highly correlated with the spatial resolution of OCT system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call