Abstract

ABSTRACTDefective viral genomes (DVGs) are parasitic viral sequences containing point mutations, deletions, or duplications that might interfere with replication. DVGs are often associated with viral passage at high multiplicities of infection in culture systems but have been increasingly reported in clinical specimens. To date however, only RNA viruses have been shown to contain DVGs in clinical specimens. Here, using direct deep sequencing with multiple library preparation strategies and confirmatory digital droplet PCR (ddPCR) of urine samples taken from immunosuppressed individuals, we show that clinical BK polyomavirus (BKPyV) and JC polyomavirus (JCPyV) strains contain widespread genomic rearrangements across multiple loci that likely interfere with viral replication. BKPyV DVGs were derived from BKPyV genotypes Ia, Ib-1, and Ic. The presence of DVGs was associated with specimens containing higher viral loads but never reached clonality, consistent with a model of parasitized replication. These DVGs persisted during clinical infection as evidenced in two separate pairs of samples containing BK virus collected from the same individual up to 302 days apart. In a separate individual, we observed the generation of DVGs after a 57.5-fold increase in viral load. In summary, by extending the presence of DVGs in clinical specimens to DNA viruses, we demonstrate the ubiquity of DVGs in clinical virology.IMPORTANCE Defective viral genomes (DVGs) can have a significant impact on the production of infectious virus particles. DVGs have only been identified in cultured viruses passaged at high multiplicities of infection and RNA viruses collected from clinical specimens; no DNA virus in the wild has been shown to contain DVGs. Here, we identified BK and JC polyomavirus DVGs in clinical urine specimens and demonstrated that these DVGs are more frequently identified in samples with higher viral loads. The strains containing DVGs had rearrangements throughout their genomes, with the majority affecting genes required for viral replication. Longitudinal analysis showed that these DVGs can persist during an infection but do not reach clonality within the chronically infected host. Our identification of polyomavirus DVGs suggests that these parasitic sequences exist across the many classes of viruses capable of causing human disease.

Highlights

  • IMPORTANCE Defective viral genomes (DVGs) can have a significant impact on the production of infectious virus particles

  • In 13 of the BK polyomavirus (BKPyV)-positive samples, we identified large rearrangements or deletions constituting DVGs in BKPyV or JC polyomavirus (JCPyV) that were supported by 10 or more sequencing reads and included samples with a sum total frequency of 10% or greater of these rearrangements (Fig. 2, Table 1)

  • Twelve of the thirteen samples with rearrangements were identified in BKPyV genomes collected from eleven different individuals, while the remaining sample was identified in a JCPyV genome

Read more

Summary

Introduction

IMPORTANCE Defective viral genomes (DVGs) can have a significant impact on the production of infectious virus particles. Many DVGs of human-pathogenic viruses produce defective interfering particles that parasitize and interfere with viral replication. DVGs have frequently been identified in cell culture systems, especially when viral stocks are passaged at high multiplicities of infection, and are increasingly being identified in clinical specimens [4, 10,11,12,13,14]. These DVGs contain deletions of variable lengths and across various regions in the genome but generally retain the origin of replication [15]. The significance and role of DVG during clinical infection are unclear

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.